> G.P Women's College
> D.M University
> Mathematics (Hons) $2^{\text {nd }}$ Sem
> CMA -105
> Real Analysis
> F.M-50

Answer all questions

1. Define countable and uncountable sets. Write down the order structure of a field. (3+7M)

OR

Explain the field structure of a set. (10M)
2. Define limit point of a set. Prove that every infinite bounded set has a limit point. ($2+8 \mathrm{M}$)

OR

Prove that the real number field R is an archemedian. For all real number x and y, show that

$$
|x+y| \leq|x|+|y| . \quad(6+4 \mathrm{M})
$$

3. Define the convergence of a sequence. Prove that a sequence cannot converge to more than one limit. ($2+8 \mathrm{M}$)

OR

Prove that every bounded sequence has a limit point. ($2+8 \mathrm{M}$)
4. Define absolute convergence and conditional convergence. Prove that every absolutely convergence series is convergent. (10M)

OR
Test the series : $\frac{1+2}{2^{3}}+\frac{1+2+3}{3^{3}}+\frac{1+2+3+4}{4^{3}}+\ldots \ldots$.
5. State and prove Leibnitz's test for the convergence of an alternating series. Show that the series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \quad \text { is convergent. } \quad(1+5+4 \mathrm{M})
$$

OR

Test the series $\sum U n$, where (i) $U n=\frac{2 n+1}{3 n^{2}+1}$

$$
\text { (ii) } U n=\frac{\sqrt{n+1}-\sqrt{n}}{n} \quad(5+5 M)
$$

Dhanamanjuri University

G.P. Women's College, Imphal

Mathematics-(Hon)
Differential Equations (CMA-107)
Total Marks $=\mathbf{5 0}$

Note: Questions 1 \& 2 are compulsory. Answer any four of the remaining (3-7). The figures on the right margin indicate full marks for the questions:

1. Choose and rewrite the correct answer for each of the following: $\quad(1 \times 5=5)$
(a) The order and degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{3 / 2}+5\left(\frac{d y}{d x}\right)^{4}+8 y=\log x$ is:
(i) $(3,4)$ (ii) $(2,3)$ (iii) $(4,3)$ (iv) $(3,1)$
(b) The spherical complementary function of the differential equation $y^{\prime \prime}+2 y^{\prime}+y=0$ is:
(i) $\left(c_{1}+c_{2} x\right) e^{-x}$,
(ii) $\left(c_{1} x+c_{2} x^{2}\right) e^{-x}$, (iii) $\left(c_{1}+c_{2} x\right) e^{x}$,
(iv) $\left(c_{1} x+c_{2} x^{2}\right) e^{x}$
(c) The integrating factor of the group of terms as being part of an exact differential equation $x d y-y d x$ is:
(i) x^{2}, (ii) y^{2}, (iii) $\frac{1}{y^{2}}$, (iv) $\frac{1}{x^{2}}$
(d) In the Lake Pollution Model of equation $\frac{d M}{d t}=C_{\text {in }}(t) \otimes Q_{\text {in }}(t)-C_{\text {out }}(t) \otimes Q_{\text {out }}(t)$, the volumetric flow rate through the lake is denoted by:
(i) C, (ii) M, (iii) t, (iv) Q
(e) The EMF to a circuit is governed by the differential equation $L \frac{d i}{d t}+R i=E$, then its solution is given by:
(ii) $\quad i e^{R t / L}=\int \frac{L}{E} e^{R t / L} d t+c$
(iii) $\quad i e^{R t / L}=\int \frac{E}{L} e^{R t / L} d t+c$
(iv) $\quad i e^{R t /}=\int \frac{i}{L} e^{R t / L} d t+c$
(v) None of the above.
2. (a) What is the Mathematical Modelling? Write the applications of Mathematical Modelling.
(b) Why Mathematical Modelling applicable to differential equations?
3. (a) What is an exact differential equation? Show that the necessary and sufficient condition that the equation $M x+N y=0$ will be exact for a differential equation of first order and first degree is that $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
(b) Solve: $\left(x^{4} y^{2}-y\right) d x+\left(x^{2} y^{4}-x\right) d y=0$.
4. (a) What do you mean by SIR model for spread of disease? Explain carefully how each component of the susceptible differential equations in the case of corona virus epidemic.
(b) Find a step size for which the Euler solutions appear to closely track true solutions of the Predator-prey model system.
5. (a) Define Clairaut's equation and find the solution of Clairaut's equation.
(b) Show that the equation $x p^{2}+p x-p y+1-y=0$ is a Clairaut's equation. Hence obtain the general and singular solution.
$(4+6=10)$
6. (a) Using the method of variation of parameters, solve: $\left(D^{2}+a^{2}\right) y=\sec a x$.
(b) Solve: $\left(D^{2}-2 D+2\right) y=e^{2} \tan x$ using the method of variation of parameters.
7. (a) Find the Particular Integration of the form $\frac{\sin a x}{f(D)}, \frac{\cos a x}{f(D)}$ and model the equation.
(b) Solve: $\left(D^{2}-4 D+13\right) y=\cos 2 x$.

2021

(June)

Dhanamanjuri University

G.P. Women's College, Imphal
 Mathematics-(Pass)
 Differential Equations (DMA-103)
 Total Marks = 50

Note: Answer any five of the following:

1. Define homogeneous linear equations or Cauchy-Euler equations.
(a) Solve: $\left(x^{2} D^{2}-x D+2\right) y=x \log x$
(b) $x^{3}\left(\frac{d^{3} y}{d x^{3}}\right)+2 x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)+2 y=10\left(x+\frac{1}{x}\right)$
2. (a) What is an integrating factor? Show that if the given equation $M d x+N d y=0$ is homogeneous and $M x+N y \neq 0$, then $\frac{1}{(M x+N y)}$ is an integrating factor.
(b) Solve: $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$.
3. (a) Define Clairaut's equation and find the solution of Clairaut's equation.
(b) Reduce the equation $(p x-y)(x-p y)=2 p$ to Clairaut's form by substitution $x^{2}=u$ and $y^{2}=v$ and find its complete primitive (general solution) and its singular solution, if any.
(5+5=10)
4. (a) Show that the Wronskian of two solutions of the equation $a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0, a_{0}(x) \neq 0, x \in(a, b)$ is either identically zero or never zero on (a, b).
(b) Show that $e^{2 x}$ and $e^{3 x}$ are linearly independent solutions of $y^{\prime \prime}-5 y^{\prime}+6 y=0$. Find the solution $y(x)$ with the property that $y(0)=0$ and $y^{\prime}(0)=1$.
5. (a) Write the general (standard) form of linear equations of the second order. Prove that $y=\sin x$ is a part of the complementary function (c.f.) of the equation $(\sin x-x \cos x) y^{\prime \prime}-x \sin x y^{\prime}+y \sin x=0$.
(b) Solve: $x^{2} y^{\prime \prime}-\left(x^{2}+2 x\right) y^{\prime}+(x+2) y=x^{3} e^{x}$.
6. (a) Reduce the differential equation $y^{\prime \prime}+P y^{\prime}+Q y=R$, where P, Q and R are functions of x to the form $\frac{d^{2} v}{d x^{2}}+I v=S$, which is known as the normal form of the given equation.
(b) Apply the method of variation parameters to solve $y_{2}+y=\operatorname{cosec} x$.

Dhanamanjuri University
 G.P. Women's College, Imphal
 Mathematics-(Generic)
 Differential Equations (GEM-003)
 Total Marks $=50$

Note: Answer any five of the following:

1. (a) What is an exact differential equation? To determine the necessary and sufficient condition for a differential equation of first order and first degree to be exact.
(b) Solve: $\left\{y\left(1+\frac{1}{x}\right)+\cos y\right\} d x+(x+\log x-x \sin y) d y=0$.
2. (a) Define an integrating factor. Prove that if $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)$ is a function of x alone say $f(x)$, then $e^{\int f(x) d x}$ is an integrating factor of $M d x+N d y=0$.
(b) Using the above rule, solve $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$.
3. (a) Define Clairaut's equation and find the solution of Clairaut's equation.
(b) Reduce the equation $x^{2} p^{2}+p y(2 x+y)+y^{2}=0$ where $p=\frac{d y}{d x}$ to Clairaut's form by putting $u=y$ and $v=x y$ and find its complete primitive and its singular solution.
4. (a) Define the Wronskian. Prove that two solutions $y_{1}(x)$ and $y_{2}(x)$ of the equation $a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0, a_{0}(x) \neq 0, x \in(a, b)$ are linearly dependent iff their Wronskian is identically zero.
(b) Prove that $\sin 2 x$ and $\cos 2 x$ are solutions of the differential equation $y^{\prime \prime}+4 y=0$.and these solutions are linearly independent.
$(1+5+4)$
5. (a) Find the complete solution of $y^{\prime \prime}+P y^{\prime}+Q y=R$ in terms of one known integral belonging to the complementary function (c.f.).
(b) Solve: $x y^{\prime \prime}-(2 x-1) y^{\prime}+(x-1) y=0$.
6. (a) By using transformation of the equation to the normal (i.e. removal of the first derivative) solve $y^{\prime \prime}-2 \tan x y^{\prime}+5 y=\sec x e^{x}$.
(b) Apply the method of variation parameters to solve $y_{2}+n^{2} y=\sec n x$.
