G.P Women's College D.M University Mathematics (Hons) 2nd Sem CMA – 105 Real Analysis F.M-50

Answer all questions

1. Define countable and uncountable sets. Write down the order structure of a field. (3+7M)

OR

Explain the field structure of a set. (10M)

2. Define limit point of a set. Prove that every infinite bounded set has a limit point. (2+8M)

OR

Prove that the real number field *R* is an archemedian. For all real number *x* and *y*, show that

 $|x + y| \le |x| + |y|$. (6+4M)

 Define the convergence of a sequence. Prove that a sequence cannot converge to more than one limit. (2+8M)

OR

Prove that every bounded sequence has a limit point. (2+8M)

 Define absolute convergence and conditional convergence. Prove that every absolutely convergence series is convergent. (10M) OR

Test the series : $\frac{1+2}{2^3} + \frac{1+2+3}{3^3} + \frac{1+2+3+4}{4^3} + \dots$ (10M)

5. State and prove Leibnitz's test for the convergence of an alternating series. Show that the series

 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ is convergent. (1+5+4M)

OR

Test the series $\sum Un$, where (i) $Un = \frac{2n+1}{3n^2+1}$

(ii)
$$Un = \frac{\sqrt{n+1} - \sqrt{n}}{n}$$
 (5+5M)

2021

(June) Dhanamanjuri University G.P. Women's College, Imphal Mathematics-(Hon) Differential Equations (CMA-107) Total Marks = 50

Note: *Questions 1 & 2 are compulsory. Answer any four of the remaining (3-7). The figures on the right margin indicate full marks for the questions:*

1. Choose and rewrite the correct answer for each of the following: $(1 \times 5 = 5)$

(a) The order and degree of the differential equation
$$\left(\frac{d^2 y}{dx^2}\right)^{\frac{3}{2}} + 5\left(\frac{dy}{dx}\right)^4 + 8y = \log x$$
 is:

(i) (3, 4) (ii) (2, 3) (iii) (4, 3) (iv) (3, 1)

- (b) The spherical complementary function of the differential equation y'' + 2y' + y = 0 is: (i) $(c_1 + c_2 x)e^{-x}$, (ii) $(c_1 x + c_2 x^2)e^{-x}$, (iii) $(c_1 + c_2 x)e^{x}$, (iv) $(c_1 x + c_2 x^2)e^{x}$
- (c) The integrating factor of the group of terms as being part of an exact differential equation xdy ydx is:

(i)
$$x^2$$
, (ii) y^2 , (iii) $\frac{1}{y^2}$, (iv) $\frac{1}{x^2}$

(d) In the Lake Pollution Model of equation ^{dM}/_{dt} = C_{in}(t) ⊗ Q_{in}(t) - C_{out}(t) ⊗ Q_{out}(t), the volumetric flow rate through the lake is denoted by:
(i) C, (ii) M, (iii) t, (iv) Q

(e) The EMF to a circuit is governed by the differential equation $L\frac{di}{dt} + Ri = E$, then its solution is given by:

(ii)
$$ie^{Rt/L} = \int \frac{L}{E}e^{Rt/L}dt + c$$

(iii)
$$ie^{Rt/L} = \int \frac{E}{L}e^{Rt/L}dt + c$$

(iv)
$$ie^{Rt/} = \int \frac{1}{L}e^{Rt/L}dt + c$$

- (v) None of the above.
- 2. (a) What is the Mathematical Modelling? Write the applications of Mathematical Modelling.
 - (b) Why Mathematical Modelling applicable to differential equations? (3+2)

3. (a) What is an exact differential equation? Show that the necessary and sufficient condition that the equation Mx + Ny = 0 will be exact for a differential equation of first $\partial M = \partial N$

order and first degree is that
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
.
(b) Solve: $(x^4y^2 - y)dx + (x^2y^4 - x)dy = 0$. (1+5+4)

- 4. (a) What do you mean by SIR model for spread of disease? Explain carefully how each component of the susceptible differential equations in the case of corona virus epidemic.
 (b) Find a step size for which the Euler solutions appear to closely track true solutions of the Predator-prey model system. (5+5)
- 5. (a) Define Clairaut's equation and find the solution of Clairaut's equation.
 (b) Show that the equation xp² + px py +1 y = 0 is a Clairaut's equation. Hence obtain the general and singular solution. (4+6=10)
- 6. (a) Using the method of variation of parameters, solve: $(D^2 + a^2)y = \sec ax$.
 - (b) Solve: $(D^2 2D + 2)y = e^2 \tan x$ using the method of variation of parameters.

$$(5+5)$$

7. (a) Find the Particular Integration of the form $\frac{\sin ax}{f(D)}, \frac{\cos ax}{f(D)}$ and model the equation.

(b) Solve:
$$(D^2 - 4D + 13)y = \cos 2x$$
. (5+5=10)

2021

(June) Dhanamanjuri University G.P. Women's College, Imphal Mathematics-(Pass) Differential Equations (DMA-103) Total Marks = 50

Note: Answer any five of the following:

- 1. Define homogeneous linear equations or Cauchy-Euler equations.
 - (a) Solve: $(x^2D^2 xD + 2)y = x \log x$

(b)
$$x^{3}(\frac{d^{3}y}{dx^{3}}) + 2x^{2}(\frac{d^{2}y}{dx^{2}}) + 2y = 10(x + \frac{1}{x})$$
 (1+4+5)

2. (a) What is an integrating factor? Show that if the given equation Mdx + Ndy = 0 is homogeneous and $Mx + Ny \neq 0$, then $\frac{1}{(Mx + Ny)}$ is an integrating factor.

- (b) Solve: $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0.$ (1+4+5)
- 3. (a) Define Clairaut's equation and find the solution of Clairaut's equation.
 (b) Reduce the equation (px y)(x py) = 2p to Clairaut's form by substitution x² = u and y² = v and find its complete primitive (general solution) and its singular solution, if any. (5+5=10)
- 4. (a) Show that the Wronskian of two solutions of the equation $a_0(x)y'' + a_1(x)y' + a_2(x)y = 0, a_0(x) \neq 0, x \in (a,b)$ is either identically zero or never zero on (a, b).

(b) Show that e^{2x} and e^{3x} are linearly independent solutions of y'' - 5y' + 6y = 0. Find the solution y(x) with the property that y(0) = 0 and y'(0) = 1. (5+5=10)

5. (a) Write the general (standard) form of linear equations of the second order. Prove that $y = \sin x$ is a part of the complementary function (c.f.) of the equation $(\sin x - x \cos x)y'' - x \sin xy' + y \sin x = 0$.

(b) Solve:
$$x^2 y'' - (x^2 + 2x)y' + (x + 2)y = x^3 e^x$$
. (5+5=10)

6. (a) Reduce the differential equation
$$y'' + Py' + Qy = R$$
, where *P*, *Q* and *R* are functions of *x* to the form $\frac{d^2v}{dx^2} + Iv = S$, which is known as the normal form of the given equation.

(b) Apply the method of variation parameters to solve $y_2 + y = \cos ecx$. (5+5=10)

2021

(June) Dhanamanjuri University G.P. Women's College, Imphal Mathematics-(Generic) Differential Equations (GEM-003) Total Marks = 50

Note: *Answer any five of the following:*

1. (a) What is an exact differential equation? To determine the necessary and sufficient condition for a differential equation of first order and first degree to be exact.

(b) Solve:
$$\{y(1+\frac{1}{x}) + \cos y\}dx + (x + \log x - x \sin y)dy = 0.$$
 (1+5+4)

2. (a) Define an integrating factor. Prove that if $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ is a function of x alone

- say f(x), then $e^{\int f(x)dx}$ is an integrating factor of Mdx + Ndy = 0. (b) Using the above rule, solve $(x^2 + y^2 + x)dx + xydy = 0$.
- 3. (a) Define Clairaut's equation and find the solution of Clairaut's equation.

(b) Reduce the equation $x^2 p^2 + py(2x + y) + y^2 = 0$ where $p = \frac{dy}{dx}$ to Clairaut's form by putting u = y and v = xy and find its complete primitive and its singular solution. (4+6=10)

(1+5+4)

(a) Define the Wronskian. Prove that two solutions y₁(x) and y₂(x) of the equation a₀(x)y" + a₁(x)y' + a₂(x)y = 0, a₀(x) ≠ 0, x ∈ (a,b) are linearly dependent iff their Wronskian is identically zero.

(b) Prove that $\sin 2x$ and $\cos 2x$ are solutions of the differential equation y'' + 4y = 0 and these solutions are linearly independent. (1+5+4)

5. (a) Find the complete solution of y'' + Py' + Qy = R in terms of one known integral belonging to the complementary function (c.f.).

(b) Solve:
$$xy'' - (2x-1)y' + (x-1)y = 0$$
. (6+4=10)

6. (a) By using transformation of the equation to the normal (i.e. removal of the first derivative) solve $y'' - 2 \tan xy' + 5y = \sec xe^x$.

(b) Apply the method of variation parameters to solve $y_2 + n^2 y = \sec nx$. (5+5=10)